Optimality and Duality for Nonsmooth Multiobjective Fractional Programming with Generalized Invexity
نویسندگان
چکیده
منابع مشابه
Nonsmooth Multiobjective Fractional Programming with Generalized Invexity
In this paper, we consider nonsmooth multiobjective fractional programming problems involving locally Lipschitz functions. We introduce the property of generalized invexity for fractional function. We present necessary optimality conditions, sufficient optimality conditions and duality relations for nonsmooth multiobjective fractional programming problems, which is for a weakly efficient soluti...
متن کاملOptimality Conditions and Duality in Multiobjective Programming with Invexity*
( , ) ρ Φ − invexity has recently been introduced with the intent of generalizing invex functions in mathematical programming. Using such conditions we obtain new sufficiency results for optimality in multiobjective programming and extend some classical duality properties.
متن کاملSymmetric duality for multiobjective fractional variational problems with generalized invexity
The concept of symmetric duality for multiobjective fractional problems has been extended to the class of multiobjective variational problems. Weak, strong and converse duality theorems are proved under generalized invexity assumptions. A close relationship between these problems and multiobjective fractional symmetric dual problems is also presented. 2005 Elsevier Inc. All rights reserved.
متن کاملOptimality and duality for nonsmooth multiobjective fractional programming with mixed constraints
We consider nonsmooth multiobjective fractional programming problems with inequality and equality constraints. We establish the necessary and sufficient optimality conditions under various generalized invexity assumptions. In addition, we formulate a mixed dual problem corresponding to primal problem, and discuss weak, strong and strict converse duality theorems.
متن کاملSufficiency and Duality of Fractional Integral Programming with Generalized Invexity
Convexity assumptions for fractional programming of variational type are relaxed to generalized invexity. The sufficient optimality conditions are employed to construct a mixed dual programming problem. It will involve the Wolfe type dual and Mond-Weir type dual as its special situations. Several duality theorems concerning weak, strong, and strict converse duality under the framework in mixed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2001
ISSN: 0022-247X
DOI: 10.1006/jmaa.2001.7586